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This report describes the development of a large computer program to tr 
two dimensional stress wave propagation problem in arbitrary nonlinear 
The computer code, termed the SLAM Code for identification, is based upon 
finite element approach to the stress wave problem and can treat either the 
metric or plane (stress or strain) configuration. 

The finite element approach has been taken in this development to allow the user 
a general flexibility in treating two dimensional problems of rather complex 
geometry (inclusions, material layering, complex boundaries, etc.). The ~r~~~~~~ 
objective of this study has been to develop a code to treat ground shock e&&,x 
caused by a high energy explosion, although it is quite obvious that the pro 
has applicability to other stress wave problems. Nonetheless, for the pri 
problems of interest, the half-space to which the loadings are applied gen 
consists of several (arbitrarily oriented) layers of soil/rock materials, eat 
significantly differing nonlinear properties. 

The majority of codes that have been developed to treat these problems are 
based upon finite difference formulations, and thus would have difficulty In treatmg 
these complex geometries. In addition, an added flexibility has been built into the 
SLAM code, and this concerns the specification of material properties. A catalogue 
of material constitutive laws has been developed which can be added to with l&tie 
ifficulty withough changing the operation of the code. Each material occur 
particular problem can then be allowed to have any of the material pro 

available in the catalogue. 
Of course, this brings up a major problem when dealing with earth materi 

namely, the specification of applicable constitutive relations. The current catalo 
allows the specification of the following constitutive relations: 

(a) isotropic elastic material, 
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(b) transverse isotropic elastic material, 
(c) linear compressible fluid, 
(d) linear viscoelastic material, 
(e) elastic plastic material satisfying the Mises yield criterion with arbitrary 

strain hardening. 
(f) elastic plastic material satisfying the Coulomb-Mohr yield criterion. 
(g) a nonlinear material law which contains a stiffening effect under hydrostatic 

pressure as well as a plastic dissipation under deviatoric strains, to account 
for compaction effects in soils. 

The last three of this list are the only nonlinear laws currently available in the code, 
and it is with materials (e) and (f) that this report will be concerned. However, all 
of these constitutive relations have been included in an attempt to at least crudely 
approximate some known responses of soil-rock materials. Quite apparently, none 
of these are completely adequate but until further advances in the state of the art 
occur, only such approximations are available for applications to earth media. 

The use of the catalogue formulation is extremely advantageous and allows easy 
expansion of the capability of the code as further developments in constitutive 
relationships occur. The acronyn SLAM was therefore chosen to try to indicate 
the applicability of the code, representing the phrase Stress Waves in Layered 
Arbitrary Media. 

The initial formulation of the SLAM Code was based upon the elastic two 
dimensional problem [I]. This was done to develop the general flow and operation 
of the computer program. After this development, the inclusion of material non- 
linearities was made. 

In order to arrive at a mesh with which to attack a given problem, the two 
dimensional configuration is divided into small elements, these elements being 
connected at their vertices to each other. In the SLAM Code, rectangular and tri- 
angular elements are used for the mesh formulation. The data that is then developed 
is the motion history (displacements, velocities, accelerations, stresses, etc.) at 
these node points or vertices. This method of mesh formation is essentially a 
physical. one, as opposed to the more abstract approach of finite difference methods. 
Of course, if a uniform element mesh is chosen (uniform spacing of nodes), the 
developed equations of motion are entirely analogous to a finite difference formula- 
tion. 

The code has been designed to treat up to 1000 nodes (2000 degrees of freedom) 
with no restriction being placed on the number of elements comprising the mesh. 
This upper bound on the number of nodes was chosen in an arbitrary fashion, 
being more than enough to treat the problems investigated to date. This figure can 
be rather easily extended to allow many more nodes in the mesh but no requirement 
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for such extension has been encountered as yet. The code has been ma 
M 7094, CDC 3600 and CDC 6600 computers. 
the finite element formulation with its counterpart finite d~ff~~~~~~~ 

formulation, one important consideration must be kept in mind, The primary 
adv e of the finite element approach lies in its faiexibility in s~ecify~~~ node 
dist ons for a particular problem. Thus it can be used to treat problems of as 
complex a geometry as desired with no change in computer code formulation. 

wever, this added flexibility is obtained at a cost, this cost being the increased 
ount of information that must be maintained in the computer (or its auxiliary 

storage units). Thus, to perform a calculation for a simple problem with, say, a 
uniform mesh, the finite element formulation will be inefficient as compared to 
finite differences. For problems where simple mesh formations can be used, the 
finite element solution will in general take more machine time to achieve 1 
results as the difference solution. Thus the very ffex~b~~~ty which is its advantage 
can be considered a disadvantage for these cases, 

MATERIAL NONLINEU~I~ EFPECT~ 

As mentioned previously, the SLAM Code was originally developed for apphca- 
tion to elastic materials [I]. The extension of the analysis to include material 
nonlinearities is presented herein. The notation used fofollows from the previously 
reported results [2]. In the analysis, any material constitutive law can be used, 

rovided of course that it can be suitably described for inclusion in the code. Two 
particular laws are presented herein, both being elastic-plastic relations. The first 
is characterized by the Prandtl-Reuss relations [2] (van Mises yield criterion) and 
the second by the Coulomb-Mohr yield criterion [3] and its associated 
flow rule. 

The computational procedure starts from some time at which the complete 
solution is known; that is, the displacements, velocities and accelerations of all the 
nodes are specified, as well as the entire stress and strain history up to and ~~~~~d~g 
this time. Typically this time is the zero or initial time, although it need not be. 
The problem then is to determine these same variables at the following instant of 
time, suitably taking into account the nonlinearities introduced by the material 
properties. 

In the following presentation, the analysis will be carried forth considerin 
typical triangular element of the freefield mesh, for convenience. The deve~o~rne~~t. 
for the general rectangular element used in the analysis (or for that matter any 
other element shape desired) follows in a straight forward manner. The reader is 
referred to the previous development [I]. 
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The displacement field assumed for the triangular 
one which can be written as 

element (Fig. 1) is a linear 

where u is the horizontal displacement of any interior point of the element specified 
by the local coordinates (Y, z), w is the corresponding vertical displacement and 
ai are six arbitrary constants. Positive displacements are taken in the positive 

Rid 

FIG. 1. General triangular element. 

(R, 2) directions, which are the system or global coordinates (Fig. 1). Substituting 
the node point coordinates in Eq. (l), the unknown coefficients, oli , can be deter- 
mined in terms of the node point displacements as 

and D is a 6 x 6 matrix defined by the element geometry [I]. 
The strains developed at any point within the element can be determined from 
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the specified displacement field of Eq. (1). For the ax~symmet~c proble 
example, these relations are 

Substituting Eq. (1) into Eq. (3), the strains can be written as 

(4 = mb4 (4) 
where (6) = (E+. , E* , E, , y} is the strain vector. Substituting Eq. (2) into Eq. 
the strains at any point within the element can then be determined from the n 
displacements as 

(4 = DX%4 = 61 

For elastic materials, the stress-strain relation can be written symbolically as 

ju> = [Clid 

where {u> = (a,, g‘B , 0,) T> is the stress vector and G the matrix relating stress to 
strain. Again for the axisymmetric isotropic elastic problem, the C matrix is 

(1 L) 

v 

fel = (1 + v); - 2v) 
V (1” v> 

0 0 (kj-q 

where E is Young’s modulus and v is Poisson’s ratio. 
For the elastic problem, the procedure to obtain the motion of each node point 

of the element can be outlined as follows. Let us suppose that at so 
six node displacements, {x}, are specified together with any applied node point 
forces (if any) written as 

{P} = (Pi”, PiW, Pj”, Pj”, PkU, P,W] (7 

The superscript in Eq. (7) indicates the direction of the applied forces (h~r~~~ta~ or 
vertical) and the subscript i, j, or k refers to the particular node point of t&e 
element. The equations of motion for node point 1’ can then be written simply as 
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where mi is the mass of node point i, and (Ri*, RiW) are the effective r&sting forces 
developed by the distortion of the element under the specified node displacements, 
(x). Similar equations are developed at nodes j and k. The procedure for assigning 
the effective mass of each node point has been given in Ref. 1. Basically, the mass 
of each node is assigned so that the total mass of the three nodes is the same as 
the mass of the element and the centroid of the three masses coincides with the 
centroid of the element. 

Returning to the time integration of Eq. (X), if at time t, the reaction forces 
(Riu, Riw) can be determined in terms of the node displacements (x}, the accelera- 
tions of each node can be computed. Knowing the accelerations at this time, the 
displacements of the nodes can be determined at the following time, t + At, by 
some suitable numerical integration scheme. Knowing the new displacements, the 
cycle can be started again by determining the accelerations from Eq. (8) at time 
t + At and integrating to obtain the node displacements at time t + 2 At, etc. 

The problem remaining, then, is to determine the resisting forces developed by 
the node point displacements which distort the element (clearly a displacement 
field causing rigid body motions of the element develops no resisting forces). 
Prior to outlining this procedure, it should be mentioned that the equations of 
motion actually integrated are not those of the individual elements, as Eq. (8), but 
rather the total node point equations. If one considers all the elements connected at 
a given node (Fig. 2), the node point equations of motion become 

FIG. 2. Typical interior node point, N, and surrounding node points, S. 

(9) 
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where MN is the total node mass composed of the ~o~tr~b~~~o~s from each adjacent 
element, and the node resisting forces are the sum of those obtained from eao 
the adjacent elements. 

ELASTIC RESISTING FORCES 

The resisting forces developed by the given node 
obtained as follows. Consider virtual dis~~a~rn~~ts 
virtual displacements cause virtual strains (E 

Tbe associated strain energy developed in the element is therm 

where the prime indicates the transpose, and the integral is taken over the volu 
of the element. The stresses {a> are related to the actual node displacements 
Eq. (5) and (6) as 

@I = E~IWIW (12) 

Substituting Eq. (10) and (12) into Eq. (Il)? the strain energy develope 
virtual displacements is 

The corresponding external work done by the equivalent nodal resisting forces ( 
during the virtual displacement is 

where (R) = (Rp, RiW, Rp, R,“, RkU, RkW). Equating the internal and exter~~a 
work, the equivalent node resisting forces corresponding to the node dis~~a~e~~~t~ 
are 
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The matrix [k] is the element “stiffness” matrix. Again by comparing Eq. (16) with 
Eq. (9), the system equations of motion can be written symbolically as 

.A43 + Kx = FA (17) 

where A4 is the node mass, f is the node acceleration (either u or W) and FA are the 
applied node point forces. The system stiffness matrix, K, is obtained by suitably 
summing the adjacent element stiffness matrices. 

NONLINEAR MATERIAL BEHAVIOR 

The effect of nonlinear material properties comes into play when computing the 
resisting forces developed by the given node displacements. The stress-strain 
relation for the nonlinear materials considered herein can be written as 

{u] = [C](2- - l > (18) 
or 

(4 = [WEI (19) 

where {G’} is the total strain vector, {P> is the nonlinear strain component of the 
total strain, and ($1 is the elastic or recoverable portion of the strains. For velocity 
dependent constitutive relations, obvious modification to Eq. 18 or 19 must be 
made. 

Again, considering virtual node displacements, Eq. (11) can be written as 

swi = / (6x)’ [B]’ {u) dV G9.l v 

and the equivalent resisting node forces as 

cw 

Substituting Eq. (18) into (21), the resisting node forces can be found from 

From Eq. (5) and Eq. (16), this becomes 
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The first term of Eq. (23) leads to the same system stiffness matrix of E 
applicable to the elastic problem, while the second term leads to corrective forces 
which account for the nonlinearities in the material properties, or deviations from 
the elastic case. The system equations of motion for each node can then be written as 

where the nonlinear corrective forces are determine from the element corrective 
forces written as 

Thus for each element, the forces (RN) must be computed at each stage of the 
~~rnerica~ integration process, suitably accounting for the previous stress-strain 
history of each element. 

For the plane (strain or stress) triangular element, the strain distr~b~t~o~ devel- 
oped by the assumed displacement pattern is ~~iform over the element. Thus Eq. 
(25) can be simplified to 

(RN> = m~~N> m5) 
where 

PI = 1 [Bl’ [Cl dV 
V 

or the axisymmetric triangular element and for a31 cases using rec$a~~~~ar 
elements, the strain distribution is variable over the element. Thus, the ~~on~in~~~ 
strains should be computed at many points over the element cross-section to allow 
for a proper volume integration of Eq. (25). For our purposes, however, co~s~der~~~ 
sufficiently small element sizes, the nonlinear stress and strain history js co~s~dgre~ 
only at the centroid of each element and the nonlinear strains are taken as ~~~~~~~r~ 
over the element. This allows the use of Eq. (26) for all element shapes of interest, 
suitably simplifying the developed computer program. 

Tn the following paragraphs, the derivation of the computational schemes use 
for the two elastic-plastic constitutive laws considered herein is outlined. 

MISES YIELD CRITERION 

This material law was chosen since (a) it has some applicab~~~ty to real mater~a~s 
of interest, (b) it is completely specified analytically, and (c) some analytic stress 
wave propagation solutions are available for comparison purposes. The ~~ect~v~ 
stress of the material is defined as (Ref. 2) 
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where (CT? , o, , u‘z , 7) define the state of stress at a point in the material. If a given 
state of stress lies below some allowable effective stress level at some instant of time, 
the material behaves elastically. If the effective stress equals the allowable, the 
tendency for plastic flow exists. The plastic behavior of the material is defined by 
some given effective stress-effective plastic strain relation, such as that shown in 
Fig. 3. Such a relationship for this type material can be easily obtained from the 

A 
Effective General Stress-Strain Law 
stress, CT 

Effective Strain. 

FIG. 3. Typical effective stress-strain relation for general mises material. 

results of a simple tension or compression test of the material. In the developed 
code, any arbitrary effective stress-plastic strain curve is allowed by representing it 
as a series of straight line segments. If the yield curve is linear, the material is said 
to be linear strain hardening. If the curve is flat (constant yield stress), the material 
is labeled perfectly plastic. 

If at a given instant of time, a stress state yields an effective stress which lies on 
the yield curve of Fig. 3, the tendency of the material to flow plastically is specified 
by the usual normality condition to be 

where the superscript P indicates that the strain rate vector is associated with plastic 
flow and h is some factor of proportionality. If plastic flow does occur, the amount 
of plastic strain is then given by 

{da}P = dep{&}P (29) 



where Lfep is the increment in the effective plastic strain. e total effective plastk 
strain is then given by 

ep = C de-’ 

e sum is obtained by adding the effective strain nxrements de~e~o~~~ 
uring each time increment. 
The ~~~rner~6al procedure then follows in a re~at~ve~y strai rward manner. 

At some instant of time, ti , the complete solution is known, i 

node displacements b+i 
stresses 14 
effective stress si 
effective plastic strain eiP 
plastic strains (4” 
elastic strains (4%” 
total strains (E)i” 

The plastic strain rates at this time, (i.jip, can then be found from Eq. (28) (to 
within some constant). 

At the following time, ti,l = t + At, the node dis~~~~eme~ts, (x]~+~ ) are 
obtained by suitably integrating the node equations of mottos. From Eq. (S), the 
corresponding total strains in the element, {c):+, , can be ~orn~uted~ Hf it is now 
assumed that the changes in total strain from tj to tiGI occurred e~asti~a~~~, an 
a~ti~~~a~ stress state can then be computed by 

and the associated effective stress, sifl , can be found from Eq. (27). 
If this effective stress lies on or below the yield curve (equal to or less than the 

previous effective stress), the artificial stress state is a correct one, and no new 
plastic flow has occurred during the time increment. If this effective stress lies 
above the yield curve, it is incorrect and plastic flow must have occurred ~ur~~~ this 
increment. The amount of this plastic flow must now be determined. 

If the increment in total strains is assumed to occur fully plastically, a 
artificial stress state is obtained equal to the previous stress state (since the 
strains are the same), that is 

h*>i,l = c4i 

In general, the actual amount of effective plastic strain that o 
merit lies somewhere between these two states, as shown in 
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final solution, a simple trial and error procedure can be used. For the case where the 
yield curve of Fig. 4 is locally linear, the value of the effective plastic strain increment 
can be obtained analytically in terms of the local slope of the yield curve. 

It should be noted that this development is based on the assumption that the 
strain rate vector at the beginning of thetime increment can be used over the entire 
increment. If the total strain increment is relatively small, this assumption is fairly 

Effective 
stress, 0. 

r General ‘Yield Curve 

FIG. 4. General solution technique for strain increments. 

good. If the increment is large, however, the assumption may lead to obvious 
errors. In this case, the total increment can be divided into smaller segments and a 
new strain rate vector computed at the end of each segment. 

COULOMB-MOHR PLASTIC FLOW THEORY 

For the Coulomb-Mohr plastic yield criterion, the yield surface is defined by (3) 

f=aIl+d~=k (33) 

where 
II = UT + ue + ‘32, 

I,’ = Q{(q - ue)2 + (Qe - US)’ + (05 - UT)~) + T2 
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k are material properties related to the usual soil properties, the angle of 
internal friction and cohesion. When the stress state lies within the yield surface 
(f < k), the material is assumed to behave elastically, whereas if the stress state 

e yield curve (f = k), the potential for plastic flow exists. Consider 
~r~~ci~a~ stress space, the yield surface is a cone whose axis 
with the (Do , ci2 ) IS~) axes (Fig. 5). The Mises yield surface, 
circular cylinder which has the same axis as the conical su 

ohr theory. Thus, Coulomb-Mohr materials have plastic flow properties depend- 
ent upon the mean normal stress whereas the Mises materials, as previously ~e~~e~~ 
do not. 

FIG. 5. Coulomb-Mohr yield surface. 

If the friction angle ($) and cohesion (c) of soils are determined from a tri 
compression test, the parameters (01, k) of the yield criterion may be found by 

2c LX=: sin 4 
43 (3 - sin +) 

k=& cos + 
43 (3 - sin (6) 

As for the Mises material, the plastic strain rates are obtained from the ~o~rn~~~~~ 
condition, or 
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where ;\ is again a factor of proportionality. The dilatation rate is then 

6, + &) + P, = 3a.h 

Thus plastic flow of such materials is associated with a volume expansion. 
For the special case where the stress state is at the apex of the yield cone, Eq, (35) 

no longer applies since Is’ = 0. For this case the strain rate vector is undefined. 
However, it must lie within the outer normals to the conical surface at the apex. 

The solution procedure is similar to that described for the Mises material. At 
some time, ti , the complete solution is know, while by the integration process, the 
new total strains at ti + dt are known. Again, a fictitious stress state can be com- 
puted by assuming that the strain increments occur elastically. From Eq. 33, the 
yield function, J; can be computed for this fictitious state. If f < k, the strain 
increment actually did take place elastically, while if f > k, the fictitious stresses 
are inadmissible and plastic flow did occur. Again taking the strain rate vector at 
the beginning of the increment, the correct solution can be obtained to yield the 
actual stresses and plastic strain increments that develop. This process can be 
slightly modified by dividing the total strain increment into a series of segments and 
computing the new strain rate vector at the beginning of each segment. 

OTHER CONSTI?ZTTIVE RELATIONS 

The previous descriptions are based upon constitutive relations where the nonli- 
near strain components of Eq. (18) are really the nonrecoverable strain components. 
However the same procedure can be used to treat other materials wherein part of 
the nonlinear strain components can also be recovered upon “unloading”. This 
has been done, for example, in treating materials described by the material law 
(g) of the catalogue mentioned previously. This material description is one that 
was obtained primarily by fitting experimental data that was available. 

For these cases, the nonlinear strain, {P}, used in the equations of motion are 
fictitious strains used to obtain the proper corrective forces, {P}, in Eq. (24). For 
all nonlinear laws, the procedure is essentially to use the known previous stress 
history of the material together with the predicted current displacement and 
velocity fields to predict the current stress states. For these cases, then, a fictitious 
nonlinear strain can be obtained from Eq. (18) as 

(EN) = {P} - [Cl-l {CT) 

Thus any nonlinear material law can be treated within the same procedure 
previously described. 
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SOME COMPARISON RESULTS 

In the following paragraphs, we present some of the results obtainer via the 
SLAM Code for particular problems and where available, ~orn~a~~o~s wit 
analytic solutions are made. The first set considered were the simple one-di 
sional problems (stress waves in rods or about cylindrical or spherical cavities) 
these were used primarily to assist in the “debugging” process. 

IIt should be noted that the use of the two-dimensional SL for 
simple ~rob~e~~s is extremely inefficient since the computer code p-rob 
as two-dimensional. By placing suitable restrictions in node point rno~~~~s~ the 
ace-dimensional behavior can be suitable simulated, but with a 
waste of computer time. This point can be more clearly seen by cons 
constrained rod problem. 

Horizontal Roller 
Support ot Node 

(al Rectangular Element Mesh 

Cb) Triangular Element Mesh 

FIG. 6. Mesh types used for plane and cylindrical wave problems. 

To investigate this problem, a finite element mesh was ~o~str~~ted of ~~~~o~rn 
rectangles, as shown in Fig. 6. To simulate the constrained motion, each node point 
of the mesh was restricted to move in the horizontal direction only by consi 
each node to be on a horizontal roller support. Each node has then only one degree 
of freedom and a single equation of motion for each node is numerically integrated 
with time. Therefore, at each station (distance from the end of Ihe rod), two equa- 
tions of motion are integrated, one for the top node and one for the botto 
one were to write a computer program for this one-dimensional ~rob~ern~ o 
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p(t) 

FIG. 7. Displacement variation at t = 6.28 msec, one-dimensional plane strain problem, 
rectangular elements, elastic material. 

-0.2 

0 
0 

I 

I 

Analytical 
Soiotlan 

i 

I 
I 
I 
\ 
\ 
\ 
\ 

I I I I I I, 
IO 20 30 40 50 60 

O,s+ance from End. I”. 

FIG. 8. Horizontal stress variation at t = 6.28 msec, one-dimensional plane strain problem, 
rectangular elements, elastic material. 



single equation of motion would be considered at each station. Noneth 
use of this simple problem serves as a check on the two-dimensional SL 

A computer solution was obtained using the mesh of Fig. 6 and as 
material to be elastic (E = 1Q4 psi, v = 0.25, w (unit weight) = 1 
pulse pressure of 1 psi magnitude was applied to the end of th 
ment variation along the rod at a specific time after load app 

Fig. 7, from which it may be noted that the only di ences between the c~rn~~te 
and analytic solutions occur at the front (the sh tep front is “‘smeared” 

across several mesh widths). This can be better se ig. 8, which is a plot of 
horizontal stress variation along the rod at the same time. The sharp stress front, 

e handled by the finite approximation te~b~~q~es (~~6~~d~~~g any 
echniques), is smeared which leads to the usual osdlations about 

the true solution behind the front, which then gradually decay. This smearin 
effect on stress fronts can, of course, be minimized by the inclusion of “artifici 
viscosity” terms in the equations of motion, as has often been done in the various 
finite difference codes. This has not been used for the results erein as 
sho& formation was not of interest for these problems. 

FIG. 9. Displacement variation at t = 6.28 msec, One-dirne~s~Q~a~ plane strain probkm, 
rectangular elements, mises material. 
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As mentioned, the mesh used for this problem was the rectangular mesh of Fig.6. 
The equations of motion developed are then entirely analogous to those that would 
accrue by the finite difference methods, since the nodes are spaced uniformly. The 
same problem was run using the triangular element mesh of Fig. 6b, with no 
noticeable difference in the computed results. Again, this was done to check out the 
developed code. 

A 
Analytic Soiutlon 

-  IO /\,.*,4/\r\A 
“ ”  ‘” ”  v ”  -  \ 

\ 
\ 

\ 
\ 

-08 -  
\ 

\ 

‘I -0.6 -  

6 
1 

f 

-0.4 -  

\ 

I 
/ 

Computed Solution 4 

I 
I 

I 
i 

I 
-0.2 -  i 

\ 

\ 

0  
\ 

I I / I I 
0  IO 20 30 40 50 60 

Distance from End. in. 

FIG. 10. Horizontal stress variation at t = 6.28 msec, one-dimensional plane strain problem, 
rectangular elements, mises material. 

The next problem considered was the same as the previous one with the exception 
that the material was assumed to behave as an elastic-Mises plastic material with 
a yield stress of + psi and a secondary modulus of 5,000 psi; that is, the slope in 
simple compression beyond the elastic limit is 5000 psi (strain-hardening). Again, 
the displacement variation along the rod at a specific time is shown in Fig. 9. The 
displacement computations are as before in good agreement with the analytic 
solution. The corresponding horizontal stress variation in the rod is shown in Fig. 
10. By comparing these results with those of Fig. 8 for the elastic problem, it may 
be noted that the magnitude of the oscillations in the computed stresses is much 
lower than in the elastic problem due to the plastic dissipation effects. The sharp 
fronts (two in this case) are again smeared out across several mesh widths. 

Using the same meshes of Fig. 6a and 6b, the corresponding plane stress or 
unconstrained problem was investigated (removal of node restrictions) as well as the 
cylindrical wave problem. The results of several runs for the cylindrical problem 
with differing strain hardening moduli is shown in Fig. 11, clearly indicating the 
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= 0.25 
5 0 = 100 pc: 
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Conpression Tesi Doto Conpression Tesi Doto 

Dlstonce from Caviiy, i7. 

FIG. PI. isPlaccment variation at t = 6.28 msec, cylindrical wave problem, 
pressure, rectangular mesh, mises material. 

; i 0.25 
_ = I x !04,;; 

0: = loopcf 
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Disisnce from End. in, 

FIG. 12. Stress variation at t = 6.28 msec, one-dimensional plane strain problem, 
elements, Coulomb-Mobr material. 
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influence of plastic Aow on the response. A typical result for a Coulomb-Mohr 
material is shown in Fig. 12, the geometry again being the plane strain rod problem. 
The material in this case exhibits both internal friction and cohesion. Other 
spherical wave problems including effects of load and unload were run and com- 
pared with other numerically generated data with similar results obtained. These 
have not been included here for brevity. 

GROUND SHOCK PROBLEM 

Among the various two dimensional problems for which numerical data was 
generated included a particular layered half-space subjected to the pressure 
loadings simulating the effects of a nuclear detonation. The configuration and 
applied loadings of the half space are shown in Fig. 13. The loadings used to 

FIG. 13. Applied loadings to simulate nuclear detonation. 

simulate the blast effects include a surface overpressure radiating from ground 
zero together with a direct pressure pulse. This direct pulse is used to simulate the 
effects of the direct ground shock emanating from the crater. The results of “close- 
in” codes, specifically designed to treat this ultra high pressure region, have been 
used to generate the form and phasing of this pulse. 

The half-space is composed of three rock layers, each with differing properties. 
The surface layer, extending to the 50 ft. depth, is a shale material with properties 
represented by an elastic-Mises plastic material. The second layer extends to 200 
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and is a Limestone, represented as an e~ast~~~~~u~o 
d layer is the base layer and is an elastic granite material. The specific ~ro~er~~~s 

of each rock is presented in Table 1. 

TABLE 1 

ROCK PROPERTIES 

Layer 

Shale 

Depth 
(ft) 

O-50 

Elastic 
Properties 

E = 1.5 x 105 psi 

z’ = 0.47 
w = 137 pcf 

Plastic 
Properties 

&es plastic 

Limestone 

Granite 

50-200 

200-w 

E = 6.6 x lo5 psi 
Y = 0.3 
w = 143 pcf 

E = 9.6 x IO6 psi 
Y = 0.25 
w = 167 pcf 

~OU~~rn~-~O~ plastic 
6: = 4200 psi 
4 = 21,4 degrees 

NOW- 

A portion of the mesh that was used for this problem is shown in Fig. 14. 
was desired at some specific ground ranges and depths only. In this region, the 
was made relatively fine. Away from this zone, the mesh was gradually coarsene 

RADIUS FROM GZ (FT)!xIo’J 
0 40 80 120 160 200 
I : : : : : t 1 i 1 ; 1 

FIG. 14. Section of element mesh used in three-layer problem. 
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to minimize the total number of nodes (or degrees of freedom) required. The 
boundaries of the mesh were placed sufficiently far so that any reflection effects of 
the boundaries would not be felt in the zone of interest within the desired time 
duration. The mesh used consisted of about 700 nodes or 1400 degrees of freedom. 

The vertical displacement history computed at the surface at a specific ground 
range (distance from ground zero) is shown in Fig. 15. Positive displacements in 
this figure are measured downward. The initial air induced displacement reaches a 
peak value of approximately 5 inches after which the direct pressure pulse traverses 

TIME (SEC) 

FIG. 15. Vertical displacement history, 700 ft. ground range. 

the site causing the upward motion. Similar computations for a half space composed 
entirely of the elastic granite base layer material showed a peak vertical displace- 
ment of 1.5 inches. Thus the plastic flow effects in the surface layers significantly 
increase the developed displacements. 

At the deeper depths in the elastic granite, the corresponding vertical displace- 
ment histories (Fig. 16) are significantly reduced and are also different in character, 
with the direct induced effects not as great as at the surface. The oscillations in the 
motions in Fig. 16 are caused by the layering of the system which induce a signi- 
ficant bounce effect in the gross motion. 

The horizontal or radial displacement history developed at the surface is shown 
in Fig. 17. Outward displacements are taken as positive in this figure. As may be 



+ 150 Ft. lepth 

X250 F:. Depth 

/  i )  i I  :  I  !  :  

.O4 .06 .08 .;0 .I2 
T!ME (SEC) 

RG. 16. Vertical displacement histories, 700 ft. ground range. 

TIME (SEC1 

Fm. 17. Horizontal displacement histories, 700 ft. ground range. 
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noted, the motion is entirely outward at the surface. Again, comparing the results 
with those for the uniform elastic problem, plastic flow effects completely change 
the radial response. For the elastic problem, the shear wave effects cause the air- 
induced surface motion to be initially inward (toward ground zero). This is then 
reversed with the passage of the direct ground shock. As can be seen from Fig. 17, 
the weakness of the material in shear prevents this initial inward motion from 
occurring. 

CONCLUSIONS 

This paper has presented a summary of the development of a large computer 
program designed to treat the general two-dimensional stress wave propagation 
problem. The code is based upon the finite element formulation and considers 
general nonlinear plastic flow effects in the material. 

The results presented for the one-dimensional wave problems were used primarily 
to assist in the debugging process, since these are the only problems for which 
analytic solutions are known. A second set of problems were investigated and these 
were the two dimensional steady problems of a step pressure pulse moving uni- 
formly over the surface of a half-space. The results of these have not been presented 
herein for lack of space, but they were conducted to study the effect of mesh spacing 
on the computed responses. These indicate that expanding the mesh away from 
zones of interest does not significantly alter the computed response within the 
zones of interest. This then allows the user the capability to expand the mesh away 
from zones of interest to decrease the number of nodes to be considered in a 
problem with a corresponding decrease in computer running time. 
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